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 The world’s pollution rates have been increasing exponentially due to the many reckless 
lifestyle practices of human beings as well as their choices of contaminating power sources. 
Eventually, this lead to a worldwide awareness on the risks of those power sources, and in 
turn, a movement towards the exploration and deployment of several green technologies 
emerged.  
Proton Exchange Membrane Fuel cells (PEMFCs) are one of those green technologies. 
However, in order to be able to successfully and efficiently deploy PEMFC systems, a solid 
fault diagnosis scheme is needed. The development of accurate model based fault diagnosis 
schemes has been imposing a lot of challenge and difficulty on researchers due to the high 
complexity of the PEMFC system. Furthermore, confidentiality issues with the 
manufacturer can also impose further constraints on the model development of a 
commercial PEMFC system. In this work, an approach to develop an accurate PEMFC 
system model despite the lack of crucial system information is presented through the use of 
Siemens LMS AMESim software. The developed model is then used to develop a fault 
diagnosis scheme that is able to detect and isolate five system faults.  
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1. Introduction  

Proton Exchange Membrane Fuel Cells are complex multi-
physics systems (chemical, electrical, fluidic, thermal, and 
mechanical phenomena are inter-acting with one another). This 
makes the modeling and fault diagnosis of PEMFC systems a very 
difficult task. Furthermore, when the modeling is based on 
experimental testing and experimental data, some limitations are 
usually faced. For example, many physical system data may be 
absent or difficult to obtain with the system’s supplied data 
acquisition. Furthermore, due to warranty issues, the addition of 
sensors might be difficult since only limited access to the systems 
is allowed. Likewise, other specific parameters might be 
unobtainable due to manufacturer confidentiality issues.  

This paper is an extension of work originally presented in the 
7th International Conference on Modeling, Simulation, and 
Applied Optimization (ICMSAO) [1]. It presents a novel 
approach, in which the Siemens software, LMS AMESim 14, is 
used as an alternative modeling tool to model a PEMFC system 
when such limitations are faced. The LMS AMESim software can 
serve as an excellent and attractive simulation and modeling 
platform for different complex physical systems such as 
automobile and aviation systems as well as power generation 
systems and transmission lines. Moreover, it has outstanding 
simulation capabilities that makes it an excellent platform for fault 
simulation, and fault diagnosis studies. The graphical user 
interface comprehensive library it contains makes it very easy to 
compile a complete system model from different system 
components. Instead of writing all the modeling equations which 
could be time consuming and is prone to modeling errors, a user 
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can use a ready accurate model better and focus on the parameter 
identification step in order to find the model that matches the 
pursued system performance measures. Furthermore, a researcher 
can easily change the scripts of the components used to better suit 
their system’s design, as well as create new libraries with more 
specific components.   

The ElectraGenTM 3 kW PEMFC system shown in Figure 1, is 
an actual commercial system used in practice in many sectors, 
especially in telecommunication companies. It uses hydrogen gas 
supplied from pressurized hydrogen cylinders as the anode fuel, 
and atmospheric air supplied by a compressor and humidified 
through a built-in humidity exchanger as the cathode fuel. The 
ElectraGenTM system is an outdoor air cooled system, and it is only 
operable at ambient temperatures ranging from –40°C to 50°C. It 
contains a total of 38 cells and can produce up to 3 kW of 
unregulated DC output power and has a rated voltage of 48V. 

 
Figure 1: The ElectraGenTM PEMFC system and the 3 kW Load. 

The module contains the ElectraGenTM 3 kW Fuel Cell stack 
with integrated microprocessor controller and safety features, a 
hydrogen pressure gauge which gives an indication of fuel level 
and the 3kW load which consists of 30 lamps, 100W each (see 
Figure 1). The system is connected through data acquisition to a 
GUI based on LabVIEW to monitor and log the different system 
variables (stack current, stack voltage, external voltage, individual 
cell voltages, cabinet temperature, cathode air temperature, coolant 
temperature, exhaust temperature, and hydrogen pressure). The 
ElectraGenTM system is installed outdoor and the experimental 
data sets collected from the system were taken at extreme 
environmental conditions in the summer at noon with the ambient 
temperature ranging from 48°C to 52°C. However, due to warranty 
issues, limited access to the systems was allowed and limited data 
was obtainable from the data acquisitions. Moreover, due to 
confidentiality issues with the manufacturer, several physical 
parameters were unobtainable such as active cell area, membrane 
length, volumes of cathode and anode chambers, mass of stack, 
etc. This made it very difficult to model the system and develop an 
accurate fault diagnosis scheme. Therefore LMS AMESim was 
used as an alternative modeling platform since all the common 
PEMFC modeling equations available in literature [2, 3] are 
already embedded in its library components.  

Furthermore, it is convenient to mention here that the simulated 
model will not be an exact match for the ElectraGenTM system 
since not enough system readings were available to match the 

model to. However, it is the aim of this work to develop an 
AMESim model that is as realistic as possible by matching all the 
known features of the actual physical system (the ElectraGenTM 

system) to their equivalents in the AMESim model as best as 
possible. This model can then be used in the fault diagnosis study. 

Section 2 presents the ElectraGenTM modeling and validation 
results using the Siemens LMS AMESim Software. In section 3, 
the simulation of five different system faults is presented, and in 
section 4 two residual generation techniques are evaluated and then 
outperforming technique is used to develop a fault diagnosis 
scheme in AMESim for the ElectraGenTM system. The fault 
diagnosis scheme is then evaluated and concluding remarks are 
finally given in section 5. 

2. AMESim Modeling of the ElectraGenTM 3 kW System 

The LMS AMESim software contains several embedded 
parameter identification tools including Genetic Algorithms (GA). 
However, in order to be able to use such tools efficiently, several 
software licenses are needed.  To further explain this, GA is a 
population based mechanism that is known to be successful 
because it performs parallel evaluations, and when only one 
AMESim license is available, using GA becomes impractical. As 
an example, if the GA has 20 individuals in its population, and with 
a preset maximum number of generations of 500, this is equivalent 
to 10,000 runs of the software. With one system license, the 
software will be unable to perform parallel evaluations. Thus, if a 
single run of the software takes 1 minute, then the parameter 
identification process using GA and one system license will take 
10,000 minutes (almost seven days).  

As a result, matching the parameters of the AMESim model to 
the actual system performance of the ElectraGenTM system was 
done through trial and error.  The LMS AMESim model developed 
for the ElectraGenTM PEMFC system is presented in Figure 2. 

 
Figure 2: ElectraGenTM 3 kW system’s model in AMESim. 

2.1. AMESim Model Parameter Identification 

The actual power demand data collected experimentally from 
the ElectraGenTM system was used as the input to the system in 
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Figure 2.  After several trial and error attempts to match the stack 
voltage, stack current, and stack temperature values as best as 
possible to the actual experimental data collected from the system; 
the best obtained match is depicted in the following figures: Figure 
3 gives the power demand input of the modeling data set, and 
Figures 4, 5 and 6 presents a comparison between the actual 
experimental current, stack voltage and stack temperature 
respectively to those resulting from the AMESim simulation 
model. 

 
Figure 3: Power demand of the AMESim modeling data set. 

 
Figure 4: Experimental versus AMESim model’s resulting current of the 

modeling data set. 

 
Figure 5: Experimental versus AMESim model’s resulting stack voltage of 

the modeling data set. 

 
Figure 6: Experimental versus AMESim model’s resulting stack temperature 

of the modeling data set. 

2.2. AMESim Model Validation 

Two other ElectraGenTM experimental data sets were used to 
validate the obtained AMESim model of Figure 2. Figure 7 
presents the power demand of the first validation example and 
Figures 8 and 9 compare the actual experimental current and stack 
voltage to those obtained from the LMS AMESim model 
respectively. Similarly, the power demand of the second validation 
example is given in Figure 10, and a comparison between the 
actual and simulation current is presented in Figure 11, whereas a 
comparison between the actual and simulation stack voltage is 
presented in Figure 12.  

 
Figure 7: Power demand of the first validation example. 

 
Figure 8: Actual versus simulation current of the first validation 

example. 
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Figure 9: Actual versus simulation stack voltage of the first validation example. 

 

Figure 10: Power demand of the second validation example. 

 

Figure 11: Actual versus simulation current of the second validation example. 

 

Figure 12: Actual versus simulation stack voltage of the second validation 
example. 

Obviously, a perfect representation of the ElectraGenTM system 
is unobtainable through trial and error alone.  Nevertheless, after 
validation, the AMESim obtained model proved to give a proper 
representation of the system’s performance and was therefore used 
in the following fault diagnosis study.  

Moreover, if resources (multiple licenses of the software) were 
available, a much more accurate representation of the system 
would have been achievable through the use of Genetic Algorithms 
in the parameter identification approach in AMESim, which would 
have in turn lead to a better fault diagnosis study. 

3. Fault Simulation Using AMESim Model 

Several faults were induced in the AMESim model and the 
system’s performance measures towards those faults were 
recorded. The induced faults are: 

1. Drying 

2. Flooding 

3. Air leakage 

4. Hydrogen Leakage 

5. Cooling System Failure 

The above faults were simulated using different techniques. 

3.1. Drying 

Zawodzinski et al. were the first to describe the water content 
in the membrane by (λ) in [4] in order to estimate its state of 
humidity. As presented in (1), λ represents the ratio between the 
number of water molecules in the membrane to the number of 
(𝑆𝑆𝑂𝑂3−𝐻𝐻+) charge sites in the Nafion layer of the membrane [5].  

 𝜆𝜆 =  𝐻𝐻2𝑂𝑂
𝑆𝑆𝑂𝑂3−𝐻𝐻+ 

 (1) 

The AMESim PEMFC stack module automatically calculates 
the water content λ in the membrane. Therefore, when simulating 
drying or flooding, λ would give an indication towards the 
membrane’s state of health.   

However, λ cannot be used in the fault diagnosis study because 
this parameter is not readily available in commercial fuel cells. 
Furthermore, the PEMFC undergoes drying condition when the 
water content in the membrane λ drops below 4 [6].   

Therefore in order to simulate drying, the humidity level of the 
input air was set to be 0% and the target humidity level of the 
humidifier was dropped to 10% only. The water content in a 
healthy stack and that of a drying stack are compared in Figure 13. 
The water content of the stack that is undergoing drying is 
obviously well below 4.  Figure 14 on the other hand depicts the 
difference between the polarization curve of a healthy stack and a 
drying stack. It is noticed that drying results in a significant 
voltage.  
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Figure 13: The water content in the membrane (λ) of a normal stack versus a 
dry stack. 

 
Figure 14: Normal stack’s polarization curve in comparison to a dry stack’s 

polarization curve. 

3.2. Flooding 

Flooding was simulated by dropping the stack temperature to 
25°C while increasing the humidifier’s target humidity level to 
100%. Flooding affected both the voltage and current profiles of 
the stack as depicted in the polarization curve comparison given in 
Figure 15. Furthermore, Figure 16 shows the water content λ of the 
simulated flooded stack.  

 

Figure 15: Comparison of pressure drop in a normal stack, a flooding stack 
and a drying stack. 

 

 

Figure 16: The water content in the membrane (λ) of the simulated flooding 
stack 

Note that both flooding and drying result in similar effects to 
the stack’s polarization curve. However, flooding seemed to also 
cause a distinctive effect on the cathode pressure drop. As the stack 
gets flooded with water, the pressure drop across the cathode 
increases.  Nonetheless, in order to clearly see this effect on 
cathode pressure, the stack had to be fed with a step power demand 
profile such as that of Figure 17.  The cathode pressure of both the 
healthy and flooded stacks with respect to the power demand input 
of Figure 16 are compared in Figure 17. The flooded stack showed 
a steeper drop in pressure when compared to the healthy stack.    

 

 

Figure 17: Power demand input to normal stack and flooding stacks. 

 

Figure 18: Comparison of pressure drop in a normal stack and a flooding 
stack. 
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3.3. Air leakage 

In order to simulate air leakage, a relief valve was added right 
after the humidifier as depicted in Figure 19, and was set to leak 
air at a rate of around 10 g/s. Figure 20 shows the amount of 
leakage introduced in g/s. Furthermore, Figure 21 compares the 
input air flow rate to the PEMFC stack with and without air 
leakage.  

 

Figure 19: The relief valve added to the AMESim model to simulate air 
leakage. 

 

Figure 20: The flow rate of the air leakage induced to the PEMFC system. 

 

Figure 21: Input air flow rate to the stack with and without air leakage. 

It can be deduced from the polarization curve comparison 
depicted in Figure 22 that the air leakage had no noticeable effect 
on the stack’s current or voltage. However, it was noticed to 
impose a significant effect on the cathode pressure. To better see 
this effect, both the healthy and air leaking stacks were fed with 
the step power demand of Figure 17. Figure 23 shows the air 
leakage effect on the cathode pressure drop when compared to a non-
leaking stack.  

 

Figure 22: Polarization curves of a normal system vs. a system undergoing air 
leakage. 

 

Figure 23: Pressure drop in the cathode of a normal system vs. a system 
undergoing air leakage. 

 

3.4. Hydrogen leakage 

Similar to air leakage, hydrogen leakage was also simulated 
through the addition of a relief valve right after the hydrogen 
canister as depicted in Figure 24 in order to leak hydrogen at a rate 
of 10 g/s.  Figure 25 shows the amount of hydrogen leakage 
introduced in g/s.  

Hydrogen leakage was found to result in a slight effect on 
stack’s polarization curve as shown in the comparison of Figure 
26. Furthermore, hydrogen leakage was also found to affect the 
anode pressure as shown in Figure 27, but had no significant effect 
on the cathode pressure as seen in Figure 28.  
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Figure 24: The relief valve added to the AMESim model to simulate 
Hydrogen leakage. 

 

Figure 25: The flow rate of the Hydrogen leakage induced to the PEMFC 
system. 

 

Figure 26: Polarization curves of a normal system vs. a system undergoing 
Hydrogen leakage. 

 

Figure 27: Anode pressure of a normal system vs. a system undergoing 
Hydrogen leakage. 

 

Figure 28: Pressure drop in the cathode of a normal system vs. a system 
undergoing Hydrogen leakage. 

3.5. Cooling Failure 

The stack temperature of the ElectraGenTM system should be 
maintained at a temperature value between 60°C to 65°C for 
maximum efficiency through air cooling. However, it is also 
convenient to mention that the stack temperature should never 
reach any value above 75°C in order to avoid damage of the 
membrane. Thus, it is important to flag a cooling system failure as 
soon as the stack temperature reaches 75°C or higher. Hence, the 
stack’s temperature was increased to 75°C in order to simulate 
cooling failure. The polarization curve was found to undergo a 
significant effect with the increase in stack temperature as shown 
in Figure 29.   

Note that the 75°C stack temperature results in a slight 
improvement in the system’s polarization curve because the 
resistive components in the activation and ohmic voltage drop will 
decrease with the increase in stack temperature. However, at such 
an elevated temperature, drying of the stack will be inevitable. 
Furthermore, comprehensive literature review [7] revealed that 
operating the PEMFC at higher stack temperatures is a common 
stressor for almost all health degradation mechanisms. Thus, this 
slight improvement in the polarization curve is worthless since it 
will significantly shorten the PEMFCs lifespan.  
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Figure 29: Polarization curve of a normal system vs. a system undergoing 
cooling failure. 

Nonetheless, the stack temperature should be the main 
parameter used to detect the presence of cooling failure regardless 
of the effects on the voltage and current profiles. As soon the 
stack’s temperature reading reaches 75°C is a cooling system 
failure fault should be flagged. 

Note from Figure 29 that there is an improvement in the voltage 
performance of the fuel cell with the increase of stack temperature. 
This is expected since the rate of chemical reactions increase with 
the temperature causing this increase in voltage. However, it 
should also be noted that at this temperature value of 75°C, drying 
of the membrane is inevitable. Furthermore, high stack 
temperature is a well-known stressor for PEMFCs [8 – 11]. Thus, 
operating the system at such elevated stack temperatures will 
significantly reduce its lifespan, which makes this small voltage 
improvement at high stack temperature values worthless. 

4. Fault Diagnosis 

In this work, the model based fault diagnosis approach is based 
on the real-time comparison between the actual system 
performance and the performance predicted by the developed 
AMESim model. Any predicted discrepancies will be analyzed to 
determine the type of system fault occurring at the moment.  

4.1. Residual generation 

It can be concluded from the previous section that in order to 
detect discrepancies between the actual system and its developed 
model that can help in the fault detection and isolation process, five 
residuals (see Figure 30) should be generated based on the 
following five system variables: stack voltage (Vstack), current (I), 
stack temperature (Tstack), cathode pressure (PCathode) and anode 
pressure (Panode).  

 

Figure 30: Residual generation diagram [12]. 

Several forms exist in literature for the calculation of residuals. 
In the simplest form given in (2), the absolute value of the residual 
(rj) is compared to a relative threshold value (τj). The diagnostic 
signal (Sj) is then set to be “0” if the absolute residual is less than 
or equal to the threshold to indicate that no discrepancy is detected, 
and “1” if the absolute residual is greater than the set threshold 
which indicates that a discrepancy is detected [12]   

 𝑆𝑆𝑗𝑗 = �
0        𝑖𝑖𝑖𝑖       �𝑟𝑟𝑗𝑗� ≤ 𝜏𝜏𝑗𝑗
1        𝑖𝑖𝑖𝑖       �𝑟𝑟𝑗𝑗� > 𝜏𝜏𝑗𝑗

 (2) 

 Note that basing the fault diagnosis approach on the 
residuals calculated in (2) makes the approach prone to diagnosis 
errors. This is because the residuals of (2) are highly sensitive to 
instantaneous changes in the system such as the electromagnetic 
disturbance pulses which act on the system’s measured signals as 
well as the occurrence of actual system faults. 

Therefore, the calculation of those residuals can be slightly 
altered to decrease their sensitivity to disturbances. Thus, instead 
of calculating instantaneous residuals, they can be calculated over 
a moving window of time and judging the average of all residuals 
in that window as explained by (3), where Nr represents the number 
of residuals in the window [13]:  

 𝑆𝑆𝑗𝑗 = �
0        𝑖𝑖𝑖𝑖       𝑟𝑟𝚥𝚥�(𝑁𝑁𝑟𝑟) = 1

𝑁𝑁𝑟𝑟
�∑ 𝑟𝑟𝑗𝑗,𝑘𝑘−𝑛𝑛

𝑁𝑁𝑟𝑟−1
𝑛𝑛=0 � ≤ 𝜏𝜏𝑗𝑗

1        𝑖𝑖𝑖𝑖       𝑟𝑟𝚥𝚥�(𝑁𝑁𝑟𝑟) = 1
𝑁𝑁𝑟𝑟
�∑ 𝑟𝑟𝑗𝑗,𝑘𝑘−𝑛𝑛

𝑁𝑁𝑟𝑟−1
𝑛𝑛=0 � > 𝜏𝜏𝑗𝑗

 (3) 

The threshold value for each residual is given in Table 1, and 
it was set based on the accuracy of the actual system sensors 
installed in the ElectraGenTM PEMFC system.  

 

Table 1: Accuracy of actual sensors used to measure system variables 

System variable Sensor accuracy 
Stack Voltage (Vstack) ± 0.5 V 
Current (I) ± 1 A 
Stack Temperature (Tstack) ± 3 °C 
Cathode Pressure (Pcathode) ± 1 mbar 
Anode Pressure (Panode) ± 1 mbar 

 

4.2. Sensitivity assessment 

Both the residual calculation techniques of (2) and (3) were 
implemented in LMS AMESim to study and assess their 
effectiveness and test their sensitivity towards electromagnetic 
disturbance pulses. Thus, a noisy step power demand signal with 
disturbance pulses was generated to help with the assessment. The 
system estimator however was fed with a clean power demand 
signal to test the diagnostic signals sensitivity toward those 
disturbance pulses.  

The residuals that were calculated by the system are: r1 which 
is based on the stack temperature (Tstack), r2 which is based on the 
stack voltage (Vstack), r3 which is based on the current (I), r4 which 
is based on the anode pressure (Panode) and r5 which is based on the 
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cathode pressure (Pcathode). On the other hand, Si is the respective 
diagnostic signal ri.  

The faults being detected by the proposed fault diagnosis 
approach are: (f1 = Drying, f2 = Flooding, f3 = Air Leakage, f4 = 
Hydrogen Leakage, and f5 = Cooling Failure). The results of 
section III are summarized in Table 2 to help in the fault 
discrimination process, where 0 indicates that no discrepancies are 
detected between the predicted value and the actual measured 
value, and 1 indicates the positive detection of discrepancies 
whereas X indicates the fault exists whether the diagnostic signal 
detects discrepancies in the system variable or not. Note that the 
cooling failure that f5, is set to be flagged as soon as the stack 
temperature reaches a value of 75°C (i.e. based on S1) regardless 
of the effects on the stack voltage and current (i.e. S2 and S3).  

Table 2: The effect of faults on diagnostic signals 

fault S1 S2 S3 S4 S5 
f1 0 1 1 0 0 
f2 0 1 1 0 1 
f3 0 0 0 0 1 
f4 0 1 1 1 0 
f5 1 X X 0 0 

 
Figure 31 shows the fault diagnosis system built based on the 

instantaneous diagnostic signals calculation of (2). Figure 32 
shows the noisy power demand signal fed to the actual system 
being diagnosed and the clean power demand signal fed to the 
system estimator.  The diagnostic signals calculated based on the 
instantaneous residuals of (2) are shown in Figure 33.  

 

Figure 31: Fault diagnosis system based on instantaneous diagnostic signals. 

It is obvious from Figure 33 that the diagnosis approach based 
on the instantaneous residuals in (2) is impractical and highly 
sensitive to electromagnetic disturbance pulses, which can 
therefore result in the detection of a faults when no fault actually 
exists. For instance, at around 150 s, both S2 and S3 diagnostic 

signals were triggered, which from Table 2 , will indicate the 
presence of the first fault f1 (Drying).  

Afterwards, the diagnostic signal of (3) was also implemented 
in LMS AMESim in order to be assessed based on three different 
moving windows of time (5 s, 10 s and 15 s). The same power 
signals of Figure 32 were used in the assessment to evaluate its 
sensitivity towards electromagnetic disturbance pulses. The fault 
diagnosis system built based on the diagnostic signals calculation 
of (3) is presented in Figure 34.  

 

Figure 32: Clean and noisy power demand signals. 

 

Figure 33: The effect of the pulsating noise on the five diagnostic signals. 

 

Figure 34: Fault diagnosis system based on diagnostic signals calculated over 
a window of time. 
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Note that a super-component was added to this model to help 
calculate the diagnostic signal over three different windows of time 
equal to 5 s, 10 s and 15 s. The contents of this super-component 
for the 5 s moving window of time is presented in Figure 35, 
whereas the super-component for the 10 s moving window of time 
is presented in Figure 36, and finally the super-component for the 
15 s moving window of time is presented in Figure 37. 

 

Figure 35: Super-component calculating diagnostic signal over a 5 s time 
window 

 

Figure 36: Super-component calculating diagnostic signal over a 10 s time 
window 

Furthermore, the effect of the electromagnetic disturbance 
pulses on the calculation of the five diagnostic signals evaluated 
using a 5 s moving window of time is presented in Figure 38. 
Moreover, the effect of the disturbance pulses on the diagnostic 
signals utilizing a 10 s moving window is presented in Figure 39, 
and the effect of the disturbance pulses on the diagnostic signals 
utilizing a 15 s moving window is presented in Figure 40.  

Figures 38, 39 and 40 prove that this diagnostic approach of (3) 
outperforms that of (2). However, it is convenient to mention here 
that most commercial PEMFC systems commonly have a 
minimum sampling time of 1 s. Therefore, basing the diagnostic 
signal on a 5 s window of time can prove to be impractical as seen 
in Figure 38. Furthermore, the diagnostic signals calculated based 
on both the 10 s and the 15 s moving windows of time proved to 

be effective and insensitive to electromagnetic disturbance pulses 
as seen from Figures 39 and 40. Nevertheless, using a 10 s moving 
window of time is preferred over the 15 s moving window of time 
in order to avoid delays in detecting faults as well as saving 
memory.  

 

 

Figure 37: Super-component calculating diagnostic signal over a 15 s time 
window 

 

Figure 38: The effect of the disturbance pulses on the five diagnostic signals 
calculated using a 5 s moving window. 

http://www.astesj.com/


R.I. Salim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 297-309 (2018) 

www.astesj.com     307 
 

 

Figure 39: The effect of the disturbance pulses on the five diagnostic signals 
calculated using a 10 s moving window. 

 

Figure 40: The effect of the disturbance pulses on the five diagnostic signals 
calculated using a 15 s moving window. 

4.3. Fault diagnosis results  

To test the proposed fault diagnosis scheme designed using 
diagnostic signals calculated over a 10 s moving window of time; 
the five system faults were induced at different times to evaluate 
the system’s ability to detect and isolate the five system faults.  

The first fault to be simulated was membrane drying. Thus, the 
relative humidity target of the humidifier was dropped to 10% and 
the effect of this action was immediately captured by the diagnostic 
signals S2 and S3 as seen in Figure 41, which – from Table 2 – 
clearly indicates the presence fault f1 (drying of the membrane).  

 

Figure 41: The diagnostic signals successfully detecting drying fault. 

The second fault to be tested was membrane flooding. 
Therefore, the relative humidity target of the humidifier was raised 
to 100% while reducing the stack temperature to 25°C. Again, this 
action was clearly reflected on the diagnostic signals as seen from 
Figure 42, and the three diagnostic Signals S2, S3 and S5 were 
triggered.  However, it was noticed that the effect on the diagnostic 
signal S5 was not as fast as that on diagnostic signals S2 and S3. 
This is expected since the increase in pressure drop needs some 
time to take effect. From Table 2, triggering S2, S3 and S5 at the 
same time indicates the presence fault f2 (flooding of the 
membrane).  

 

Figure 42: The diagnostic signals successfully detecting flooding fault. 

 The third fault to be tested was the air leakage in the 
supply manifold, which was simulated through the addition of a 
relief valve after the humidifier as shown in Figure 43. This relief 
valve was set to open with a flow rate of 9 g/s after 500 s of 
operation. Only one diagnostic signal was affected by this action 
at around 500 s as depicted in Figure 44. From Table 2, it can be 
deduced that triggering only S5 indicates the occurrence of fault f3 
(air leakage).  

 

Figure 43: The modified diagnosis model with a relief valve to simulate air 
leakage. 
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Figure 44: The diagnostic signals successfully detecting air leakage fault. 

 The next fault to be simulated was hydrogen leakage. As 
shown in Figure 45, the leakage was simulated through the 
addition of a relief valve right after the hydrogen supply canister. 
This valve was set to open with a flow rate of 8 g/s after 500 
seconds of operation. The amount of hydrogen leakage can be seen 
in Figure 46.  

From Figure 47, it is noticed that three diagnostic signals were 
triggered at around 500 s, which are S2, S3 and S4. This clearly 
indicates the occurrence of fault f4 (hydrogen leakage) as it can be 
deduced from Table 2.  

 

Figure 45: The modified diagnosis model with a relief valve to simulate 
hydrogen leakage. 

Finally, the cooling system failure was tested by forcing the 
stack temperature to rise to 75°C after 1500 s of operation. The 
three diagnostic signals S1, S2 and S3 were triggered by this action 
at around 1500 s of operation as shown in Figure 48. As it can be 
deduced from Table 2, and as previously explained in section III, 

S1 alone is enough to flag fault f5 (cooling failure) regardless of the 
effects on other diagnostic signals.  

 

Figure 46: The hydrogen leakage flow rate at the relief valve. 

 
Figure 47: The diagnostic signals successfully detecting hydrogen leakage fault 

 
Figure 48: The diagnostic signals successfully detecting cooling system 

failure fault. 

5. Conclusion 

Fuel cells are extremely attractive clean power generation 
systems with the capability of someday replacing fossil fuels in the 
areas of power generation and transportation, while helping clean 
the environment by significantly lowering the world’s pollution 
rates. However, to turn this green technology dream into reality, an 
accurate model that can effectively predict the fuel cell’s 
performance in different conditions is desired. Such model can 

http://www.astesj.com/


R.I. Salim et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 297-309 (2018) 

www.astesj.com     309 
 

then be used to study, simulate, and monitor the behavior of 
PEMFCs to detect any potential faults that can affect their 
performance. 

Moreover, the complexity of the PEMFC model makes it very 
difficult and mathematically demanding to try and identify the 
modeling parameters. Furthermore, other limitations such as the 
absence of some parameters and confidentiality issues with the 
manufacturer can also limit the researchers’ ability to develop an 
accurate fault diagnosis oriented model for a commercial PEMFC 
system. The Siemens software LMS AMESim 14.2 was used in 
this work as a solution to overcome such limitations.  

A diagnosis oriented model of the ElectraGenTM PEMFC 
system was developed in LMS AMESim and five system faults 
(drying of the membrane, flooding of the membrane, air leakage, 
hydrogen leakage in the supply manifold, and cooling failure) were 
simulated to analyze their effect on different system parameters.  

Diagnostic signals based on two different residual generation 
techniques were also assessed in this work, and the outperforming 
technique was implemented in the proposed diagnosis scheme. 
This diagnosis scheme was then tested in LMS AMESim against 
the five system faults under study and it was found to be very 
successful in both fault detection and discrimination.   
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